Rational periodic points for quadratic maps
نویسندگان
چکیده
منابع مشابه
Continua of Periodic Points for Planar Integrable Rational Maps
We present three alternative methodologies to find continua of periodic points with a prescribed period for rational maps having rational first integrals. The first two have been already used by other authors and apply when the maps are birational and the generic level sets of the corresponding first integrals have either genus 0 or 1. As far as we know, the third one is new and it works for ra...
متن کاملOn Quadratic Periodic Points of Quadratic Polynomials
We focus on a very specific case of the Uniform Boundedness Conjecture, namely, bounding the number of possible c such that the quadratic polynomial φc(z) = z2 + c has quadratic periodic points of some small period. We show that there are infinitely many rational c with quadratic 4-cycles, with all such c completely understood; and only finitely many rational c with quadratic 5-cycles (we conje...
متن کاملPeriodic Points of Quadratic Polynomials
A point of period k of a function f is a point x such that f (x) = x but f (x) 6= x for any 0 < i < k. Let φk(f) denote the number of real points of period k of f . In the case that f is a quadratic polynomial, we develop an algorithm to explicitly characterize φk(f) in terms of the coefficients of f. We show the resulting characterization for k ≤ 6. The method extends to higher k and higher de...
متن کاملTopological Models for Some Quadratic Rational Maps
Consider a quadratic rational self-map of the Riemann sphere such that one critical point is periodic of period 2, and the other critical point lies on the boundary of its immediate basin of attraction. We will give explicit topological models for all such maps. We also discuss the corresponding parameter picture. Stony Brook IMS Preprint #2007/1 February 2007
متن کاملPreperiodic points for families of rational maps
Let X be a smooth curve defined over Q̄, let a, b ∈ P(Q̄) and let fλ(x) ∈ Q̄(x) be an algebraic family of rational maps indexed by all λ ∈ X(C). We study whether there exist infinitely many λ ∈ X(C) such that both a and b are preperiodic for fλ. In particular, we show that if P,Q ∈ Q̄[x] such that deg(P ) 2 + deg(Q), and if a, b ∈ Q̄ such that a is periodic for P (x)/Q(x), but b is not preperiodic f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2010
ISSN: 0373-0956,1777-5310
DOI: 10.5802/aif.2544